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We study a lattice gas model where the number of particles is conserved during dynamical process. Our
model shows a continuous phase transition from a fluctuating phase to two symmetric absorbing states at the
critical point in one dimension. We conjecture the values of the critical exponents characterizing the phase
transition of our model. We show that the obtained values are in good agreement with those estimated from
computer simulations. The critical exponents indicate that our model exhibits an absorbing phase transition
which is different from the known ones.
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Nonequilibrium phase transitions from a fluctuating phase
to one or several absorbing states occur in various reaction-
diffusion processes �1–3�. The critical behavior of nonequi-
librium phase transitions is similar to that of equilibrium
phase transitions in many respects. Therefore, the critical be-
havior of nonequilibrium phase transitions can be understood
well by using the concept of scale invariance introduced to
understand equilibrium phase transitions.

From studies of critical exponents characterizing phase
transitions, it is believed that nonequilibrium phase transi-
tions occurring in various reaction-diffusion processes can be
categorized into several universality classes. Among these
classes, the directed percolation �DP� class is the most well-
known one �2,3�. Nonequilibrium phase transitions from a
fluctuating phase to a single absorbing state generally belong
to the DP class. Most of absorbing transitions with many
absorbing states are also known to fall into the DP class �4�.
However, if there exist long-range interactions or additional
symmetries such as symmetric absorbing states, parity con-
servation, etc., absorbing phase transitions may not fall into
the DP class. In those cases, a well known class is the parity
conserving �PC� class �5–8�. The PC class appears in
reaction-diffusion processes where the number of particles is
conserved modulo 2 during the dynamical process. The PC
class also occurs in absorbing phase transitions with two
symmetric absorbing states �9,11�. The pair contact process
with diffusion �PCPD� class appears in the reaction-diffusion
process where two particles have to meet at two adjacent
places in order to create a new particle or particles �10�.

In reaction-diffusion processes exhibiting an absorbing
phase transition, the stationary particle density �s depends on
a particle creation and annihilation rate. If the particle cre-
ation rate p is greater than a certain critical value pc ,�s has a
nonzero constant value, but if p� pc ,�s is zero. The order
parameter �s vanishes algebraically as �s��p− pc�� close to
a continuous transition point. The ultimate survival probabil-
ity P� which a randomly selected site belongs to an infinite
cluster scales as P���p− pc���. � and �� coincide for DP but

they do not in general �3,12�. Nonequilibrium phase transi-
tions are characterized by a spatial and a temporal correlation
length. The spatial and temporal correlation lengths diverge
as ����p− pc�−�� and �� ��p− pc�−�� close to the transition
point. These two correlation length scales are related by ��

���
z , where z=�� /�� is called the dynamic exponent.

� ,�� ,�� ,�� are a basic set of critical exponents characteriz-
ing the universality class of a given reaction-diffusion pro-
cess �3�.

Recently, Rossi et al. introduced a conserved lattice gas
�CLG� model �13�, where the number of particles is con-
served during the dynamical process. In the model, there is
no particle creation and annihilation process. At each time
step, a randomly selected particle hops to a vacant nearest
neighbor site provided that one of its nearest neighbor sites is
already occupied. If an active particle cannot find a vacant
nearest neighbor site, the particle is immobile. A particle is
called active if at least one of its neighboring sites is occu-
pied by a particle. There is no creation process of an active
particle in the CLG model because there is no creation pro-
cess of a new particle in the model. Hence the number of
active particles continuously decreases and eventually
reaches a steady state as time elapses. The stationary active
particle density �s in the CLG model depends on the particle
density n in the initial state. If the particle density n is greater
than a critical density nc ,�s has a constant nonzero value.
But if n�nc ,�s vanishes. The CLG model shows an absorb-
ing phase transition into many absorbing states at nc. One
can apply the same scaling concept, which is used to under-
stand nonequilibrium absorbing phase transitions without a
conserved field, to the CLG model. The critical exponents
obtained from the simulation of the CLG model have differ-
ent values from those expected from the known universality
classes such as DP, PC, and PCPD class �13–15�. Rossi et al.
conjectured that the stochastic models such as conserved
threshold transfer processes and stochastic sandpile models
�13,16,17�, where the order parameter is coupled to a non-
diffusive conserved field, define a unique universality class
�13,18�.

From the fact that the universality class of reaction-
diffusion processes without a conserved field is determined
according to symmetry properties of the absorbing states,*Electronic address: corresponding author: imkim@korea.ac.kr
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naively one can infer that, if a lattice gas model with a con-
servative field exhibits a phase transition to two symmetric
absorbing states, the model might belong to another univer-
sality class which is different from the original CLG model
introduced by Rossi et al. Therefore, it would be interesting
to study a CLG model exhibiting a phase transition to two
symmetric absorbing states.

In this paper, we introduce a simple conserved lattice gas
model which shows a nonequilibrium phase transition to two
exactly symmetric absorbing states at criticality. During the
dynamical process, the total number of particles in our model
is conserved in the same way as in the original CLG model.
As expected, our model shows different scaling behavior
from that of the original CLG model having many absorbing
states. We can conjecture the values of the critical exponents
characterizing the dynamical behavior of our model in one
dimension. The conjectured values of the critical exponents
indicate that our model belongs to a different universality
class unknown until now.

We consider a simple conserved lattice gas model defined
on a one-dimensional lattice with linear size L and periodic
boundary conditions. Initially the lattice is completely filled
with two species of particles �A and B�. The ratio rAB
=NA /NB, where NA and NB denote the total number of A and
B particles, is fixed at a value between 0 to 1 during com-
puter simulation. Initially, A and B particles are randomly

distributed on the system with a fixed value of rAB. We define
a particle at a given site as an active particle if at least one of
its neighboring sites is occupied by a particle of the same
species. If all of its neighboring sites are occupied by par-
ticles of the different species, the particle is called inactive.
Each time we choose a site randomly. If the particle at the
selected site is an active one and one of its neighboring sites
is occupied by a particle of the different species, the two
particles are exchanged instantaneously. The process corre-
sponds to the following schemes

AAB → ABA

BAA → ABA

BBA → BAB

ABB → BAB ,

where the particle in the middle in each process is the se-
lected one. In our model, there is neither creation nor anni-
hilation of particles. Just a randomly selected particle can
change its position by exchanging two particles. If the num-
ber of A and B particles is initially the same, our model
reaches two symmetric absorbing states in the long time limit
such as

ABAB ¯ ABAB

BABA ¯ BABA .

However, if NA�NB, there always exist active particles in
our model.

Our model can be easily mapped onto a well known pro-
cess �AB process� �19,20�: AB→0” . Let us define �, �, and
0” as follows: � and � denote the middle of AA and BB
particles, respectively. That is, A•A and B �B. The symbol 0”
denotes the middle of AB and BA particles, i.e., A0”B and
B0”A. Let us consider the following processes, where the sec-
ond particle on the left side is a randomly selected one in
each process,

AABA → ABAA

AABB → ABAB

BBAA → BABA

BBAB → BABB .

FIG. 1. The density of particles, ��t�, as a function of time t for
p=0.5008, 0.5004, 0.5002, 0.5000, 0.4998, 0.4996, and 0.4992
from top to bottom, averaged over 100 runs on a system with size
L=106.

FIG. 2. �a� Data collapse for off-critical simu-
lations according to the scaling form �2� for L
=106 and �� =3.8 averaged over 1000 runs. Upper
data are for p=0.5001, 0.5002,…, 0.5128 and
lower data are for p=0.4999, 0.4998,…, 0.4872.
�b� Finite size data collapse according to �3� for
z=1.95 and system sizes L=64, 128, 256, 512,
and 1024 averaged over 50000 runs.
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In the above processes, we considered just the cases that a
selected particle can be exchanged with a particle on its right
side. We can rewrite the above processes by using the sym-
bols �, �, and 0” :

•0”0” → 0”0”•

•0” � → 0”0”0”

�0”• → 0”0”0”

�0”0” → 0”0” � .

Using this notation, the processes can be interpreted as fol-
lows: � or � on the most left side is a randomly selected
particle in each process. � denotes an empty site. The se-
lected particle hops to its next nearest neighbor site on its
right side if there is no � or � in the middle. If � and �
meet at the same site after hopping, they annihilate instanta-
neously. In this process, there is no possibility that � and �
exist at two adjacent sites like � � or � � . However, � �
or � � can exist at two adjacent sites. If all � and �
particles disappear, this process reaches an absorbing state.
This process is the same as the original AB process �19,20�
except that there exists a next nearest neighbor hopping pro-
cess of a selected particle instead of a nearest neighbor hop-
ping in the AB process. The difference of these hopping pro-
cesses should not affect dynamical scaling behavior.

Let us define the density of � and � particles as �•
=N• /L and ��=N� /L, where N� means the total number of �
�� or �� particles, and L is system size. The number of �
and � in our system depends on the number of A and B
particles. Defining p=�A, one can easily see that the station-
ary active particle density �s• is nonzero for p�1/2 and zero

for p�1/2. Therefore, the critical point for � is pc=1/2.
The dynamical behavior of � particles is exactly the same as
that of � particles because of the symmetric property of our
model. Therefore, we will consider only the dynamical be-
havior of � particles hereafter. In the AB process, where the
number of A and B particles is initially the same, the density
decays algebraically following the formula ���t�� t−	� with
	�=d /4 for d�dc�=4� and ���t�� t−1 for d
dc, where �
represents A or B, and d is the dimension of the system �19�.
Therefore, we expect 	•=0.25 in our model for one dimen-
sion.

Through the numerical simulations of our model, we
found that our model shows an absorbing phase transition in
one dimension. We did numerical simulations of our model
with L=106 sizes at the critical point in one dimension, we
find the decay exponent �see Fig. 1�

	• = �/�� = 0.249�2� . �1�

We can calculate the exact value of the critical exponent �
in one dimension. We can easily determine the number of
active � particles in the stationary state if we know the ini-
tially given number of A and B particles. In case of NA
�NB, the stationary state density of � particles, �s•, is ex-
actly �NA−NB� /L= �NA /L−1/2�− �NB /L−1/2�=2�p− pc�
��p− pc�. Therefore, the value of the exponent � is 1 in one
dimension. From the following relations 	=� /�� �3� and 	
=1/4, we have �� =4 when d=1.

We can also determine the exponent �� from the behavior
of the density below and above criticality by carrying out
computer simulations of our model in one dimension. The
density of particles follows the scaling form

�•�t,�� � t−	g�t���� , �2�

where �= �p− pc� denotes the distance from the critical point.
By using 	=0.2486 and �=0.0001, 0.0002, 0.0004, and
0.0128, the best collapse is obtained for �� =3.8�2� �see Fig.
2�a��.

Since in our model there is no creation process of active
particles, the number of active particles is always decreasing
as time elapses. Hence, the dynamic exponent z in our model
is determined only by diffusion of active particles. We expect
z=2 in our model in one dimension �3�. Since z=�� /��, we
also obtain ��=2. Therefore, we conjecture the values of the
three independent critical exponents �� ,�� ,��� when d=1.

FIG. 3. Two successive exchange processes of two particles, A
and B, in two dimensions. Two A particles surrounded by B par-
ticles meet each other after the exchange processes. In one dimen-
sion, A particles surrounded by B particles cannot meet each other
at all and vice versa.

FIG. 4. �a� Stationary density �s• for p=0.01,
0.02, 0.04, 0.06, 0.08, and 0.1 in two dimensions,
averaged over 100 runs on a system with sizes
L�L=1.6�105. �b� The plot of �s• versus p for
p=0.01, 0.02, 0.04, 0.06, 0.08, and 0.1. The esti-
mated slope �=2.0�1�.
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We performed finite size simulations at the critical point
to obtain the dynamic exponent z=�� /�� by changing the
system size L from 64 to 1024. Then the density of particles
�• should obey the following finite-size scaling form

�•�t,L� � t−	f�t/Lz� , �3�

where f is a universal scaling function. Using 	=0.2486, the
best collapse is obtained for z=1.95�10� �see Fig. 2�b��.

Therefore, we arrive at the following result for d=1

� = 1, �� = 2, �� = 4. �4�

Our model reaches an absorbing state for p
 pc in one
dimension, but it does not for all nonzero p when d
2. In
one dimension A particles surrounded by B particles cannot
meet each other at all. However, although only two A par-
ticles exist in the system for d
2, the two particles can meet
each other by the exchange process of A and B particles as in
Fig. 3. Therefore, the density of �s• in a steady state is non-
zero if there are more than two A particles in the system. Let
us assume that there are NAA particles in a two-dimensional
system with sizes L�L, where 1�NA�L�L. In a given
time period, the probability P�NA� for two A particles to meet
is roughly proportional to NA�NA−1� /2. Since the density �s•

is proportional to P�NA�, we obtain �s•�NA
2 � p� with �=2.

This result is in good agreement with that of the simulations
�see Fig. 4�b��.

The recently introduced CLG models show a phase tran-
sition for d�1 unlike our model. Therefore, our model be-
longs to a different universality class from the CLG. This
class also differs from the well known DP, PC, PCPD class
as well as N-BARW2 �21,22� class, where N-BARW2 means
branching and annihilating process with two offsprings in a
system with N species of particles. The phase transition in
N-BARW2 is associated with the blocking by different spe-

cies of particles as in our model. In Table I, we summarized
the critical exponents for DP, PC, PCPD, CLG model, and
our model in one dimension.

In conclusion, we have studied a conserved lattice gas
model which exhibits a nonequilibrium absorbing phase tran-
sition with two symmetric absorbing states at criticality in
one dimension. However, the model does not exhibit an ab-
sorbing phase transition in higher dimensions. In our model,
the total number of particles is conserved during the tempo-
ral evolution. We have conjectured the values of the three
critical exponents characterizing the phase transition of our
model in one dimension. We have found that these conjec-
tured values coincide well with those obtained from com-
puter simulations of our model.
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